
Week 11 – Friday



 What did we talk about last time?
 Barriers









 Semaphores are very general purpose concurrency tool, but they 
have some weaknesses:
 Semaphores take thought to use correctly: Incrementing and 

decrementing values don't map clearly to synchronization problems
 Different implementations of semaphores have different features
 Some systems (like macOS) don't have a full implementation of 

semaphores
 Semaphores can only signal to one thread: no broadcasting
 After getting a signal, threads have to take another step (like acquiring a 

lock) to get mutually exclusive access, time that can allow a race condition



 Condition variables try to overcome some weaknesses of semaphores by 
tying themselves directly to a lock

 They also have the ability to broadcast, waking up all waiting threads
 Like semaphores, they still have a function to wait and a function to signal
 However, something sneaky happens with wait:
 First, the thread must acquire a lock
 Then, it calls the wait function
 If it has to wait, it releases the lock but then reacquires it when it gets woken up
 All of which happens atomically

 This allows a thread to safely check a condition and wait until it gets 
signaled

 Think of a condition variable as a queue for waiting threads



 Initialize a condition variable

 Release a mutex, wait for the signal, then re-acquire the mutex

 Send a signal to one waiting thread to wake up

 Send a signal to all waiting threads to wake up

 Clean up the resources associated with a condition variable

int pthread_cond_init (pthread_cond_t *cond,
const pthread_condattr_t *attr);

int pthread_cond_wait (pthread_cond_t *cond, pthread_mutex_t *mutex);

int pthread_cond_signal (pthread_cond_t *cond);

int pthread_cond_broadcast (pthread_cond_t *cond);

int pthread_cond_destroy (pthread_cond_t *cond);



 To use a condition variable correctly, the thread has to acquire a lock 
before calling pthread_cond_wait() (which releases the lock)
 Calling pthread_cond_wait()without getting the lock has undefined 

behavior
 Calls to pthread_cond_wait() should be inside a while loop
 Sometimes threads are incorrectly woken up and should check before moving 

on
 Calling pthread_cond_signal() or 
pthread_cond_broadcast() doesn't wake up threads on its own
 Later calling pthread_mutex_unlock() is what actually allows those 

threads to run again



 If you have done concurrent programming in Java, these ideas of 
condition variables have been integrated into the syntax in a 
cleaner way
 Executing code in a synchronized method or synchronized block 

acquires a lock
 Calling wait() (which can only be done in synchronized code) is the 

same as calling pthread_cond_wait()
 Calling notify() is the same as calling pthread_cond_signal()
 Calling notifyAll() is the same as calling 
pthread_cond_broadcast()



public class Buffer {
public final static int SIZE = 10;
private volatile Object[] objects = new Object[SIZE];
private volatile int count = 0;

public synchronized void addItem(Object object) throws InterruptedException { 
while(count == SIZE) 

wait();
objects[count] = object;
count++;
notifyAll();         

}

public synchronized Object removeItem() throws InterruptedException { 
while(count == 0)    

wait();
count--;
Object object = objects[count];
notifyAll();         
return object;

}
}



 Syntax is a little cleaner looking in Java
 The synchronized methods work like they have a lock at the 

beginning and end
 Calling wait() waits until a notify() or notifyAll() happens
 This example shows a Buffer where items can be added or removed 

only by acquiring the lock (implicit in calling a synchronized method)
 Because the array has fixed length, only so many things can be added 

before it gets full
 That's why the addItem() will repeatedly call wait() until there's 

room and the removeItem() will repeatedly call wait() if there's 
nothing there





 In order to avoid race conditions, we introduced several 
synchronization tools:
 Locks (mutexes)
 Semaphores
 Barriers
 Condition variables

 Each of these can be misused, failing to avoid race conditions
 Likewise, each introduces overhead, slowing the system down
 But an even worse possibility is deadlock



 Deadlock occurs when the use of synchronization primitives 
cause threads to get stuck so that they will never make 
progress again
 A lock that never gets unlocked
 A semaphore that never gets posted on
 A barrier that is never reached by enough threads
 A condition variable that is never signaled on

 Like many concurrency problems, deadlock can occur rarely or 
it can happen every time a program runs



 In the following code, deadlock is possible

struct args {
pthread_mutex_t lock_a;
pthread_mutex_t lock_b;

};

void * first (void * args)
{
struct args *data = (struct args *) args;
pthread_mutex_lock (&data->lock_a); // Lock A
pthread_mutex_lock (&data->lock_b); // Then lock B
// Mode code (that would eventually unlock A and B)

}

void * second (void * args)
{
struct args *data = (struct args *) args;
pthread_mutex_lock (&data->lock_b); // Lock B
pthread_mutex_lock (&data->lock_a); // Then lock A
// Mode code (that would eventually unlock A and B)

}



 The following state diagram shows the states the threads can be in:

Both 
Unlocked

Second 
Locked B

First Locked 
A

First Locked 
Both

Second 
Locked Both

Deadlock

Second Unlocks BothFirst Unlocks Both

First Locks ASecond Locks B



 The two threads try to acquire locks in different orders:
 First tries to get lock A followed by lock B
 Second tries to get lock B followed by lock A

 If they tried to get the locks in the same order, we would never 
have this problem

 Even so, real situations are more complex
 Threads might need to acquire a number of locks for a 

number of resources
 The order might be hard to predict ahead of time



 Four conditions are needed for deadlock to 
be possible:
1. Mutual exclusion: Once a resource has been 

acquired, no other thread gets it
2. No preemption: Threads can't be made to give 

up their resources
3. Hold and wait: Threads can get one resource 

and keep it while trying to get others
4. Circular wait: Thread A needs a resource held 

by Thread B, and Thread B needs a resource 
held by Thread A (or extend to a chain of 
threads)

 Conditions 1 through 3 are unavoidable, so 
solutions often focus on avoiding circular 
wait



 Livelock is similar to deadlock
 It's a condition where, due to bad timing, processes continue 

executing code, but they never make progress beyond a 
certain point
 They're acquiring resources, giving them up, and acquiring them 

again, but still blocking each other
 If the system is set up in a certain way or is very unlucky, 

livelock could continue indefinitely
 Livelock can also sometimes resolve



struct args {
pthread_mutex_t lock_a;
pthread_mutex_t lock_b;

};

void * first (void * args)
{

struct args *data = (struct args *) args;
while (1)
{
pthread_mutex_lock (&data->lock_a);        // Lock A
if (pthread_mutex_trylock (&data->lock_b)) // Try to lock B
break;

pthread_mutex_unlock (&data->lock_a);      // Unlock A
}
// Mode code (that would eventually unlock A and B)

}

void * second (void * args)
{

struct args *data = (struct args *) args;
while (1)
{
pthread_mutex_lock (&data->lock_b);        // Lock B
if (pthread_mutex_trylock (&data->lock_a)) // Then lock A
break;

pthread_mutex_unlock (&data->lock_b);      // Unlock B
}
// Mode code (that would eventually unlock A and B)

}



 In theory, each thread could acquire the first lock at a very 
similar time, making the other one fail to get the second one

 In practice, it's unlikely that this system will stay in livelock for 
very long

 However, real systems are more complicated and could have 
long chains of resources that get partially lock and unlocked 
but never finish



 As mentioned before, we usually concentrate on the circular 
wait condition of deadlock:
 Order the resources and always acquire them in the same order
 Use timed or non-blocking versions of functions that acquire 

resources, potentially causing livelock
 Limit the number of threads that can access the resources, insuring 

that there's always enough resources to go around
 Use strategies that we'll talk about next time

 It's a hard problem: The Java Thread class has methods that 
were deprecated because they can cause deadlocks





 Synchronization design patterns
 Producer/consumer



 Work on Project 3
 Read sections 8.1, 8.2, and 8.3


	COMP 3400
	Last time
	Questions?
	Project 3
	Condition Variables
	Weaknesses of semaphores
	Condition variables
	Condition variable functions
	Using a condition variable
	Parallels to Java
	Java example
	Explanation of the Java example
	Deadlock
	Deadlock
	Deadlock
	Deadlock example
	Possible states
	Why does this happen?
	Necessary conditions
	Livelock
	Livelock example
	Livelock on the previous slide
	Avoiding deadlock
	Upcoming
	Next time…
	Reminders

