
Week 11 – Friday



 What did we talk about last time?
 Barriers









 Semaphores are very general purpose concurrency tool, but they 
have some weaknesses:
 Semaphores take thought to use correctly: Incrementing and 

decrementing values don't map clearly to synchronization problems
 Different implementations of semaphores have different features
 Some systems (like macOS) don't have a full implementation of 

semaphores
 Semaphores can only signal to one thread: no broadcasting
 After getting a signal, threads have to take another step (like acquiring a 

lock) to get mutually exclusive access, time that can allow a race condition



 Condition variables try to overcome some weaknesses of semaphores by 
tying themselves directly to a lock

 They also have the ability to broadcast, waking up all waiting threads
 Like semaphores, they still have a function to wait and a function to signal
 However, something sneaky happens with wait:
 First, the thread must acquire a lock
 Then, it calls the wait function
 If it has to wait, it releases the lock but then reacquires it when it gets woken up
 All of which happens atomically

 This allows a thread to safely check a condition and wait until it gets 
signaled

 Think of a condition variable as a queue for waiting threads



 Initialize a condition variable

 Release a mutex, wait for the signal, then re-acquire the mutex

 Send a signal to one waiting thread to wake up

 Send a signal to all waiting threads to wake up

 Clean up the resources associated with a condition variable

int pthread_cond_init (pthread_cond_t *cond,
const pthread_condattr_t *attr);

int pthread_cond_wait (pthread_cond_t *cond, pthread_mutex_t *mutex);

int pthread_cond_signal (pthread_cond_t *cond);

int pthread_cond_broadcast (pthread_cond_t *cond);

int pthread_cond_destroy (pthread_cond_t *cond);



 To use a condition variable correctly, the thread has to acquire a lock 
before calling pthread_cond_wait() (which releases the lock)
 Calling pthread_cond_wait()without getting the lock has undefined 

behavior
 Calls to pthread_cond_wait() should be inside a while loop
 Sometimes threads are incorrectly woken up and should check before moving 

on
 Calling pthread_cond_signal() or 
pthread_cond_broadcast() doesn't wake up threads on its own
 Later calling pthread_mutex_unlock() is what actually allows those 

threads to run again



 If you have done concurrent programming in Java, these ideas of 
condition variables have been integrated into the syntax in a 
cleaner way
 Executing code in a synchronized method or synchronized block 

acquires a lock
 Calling wait() (which can only be done in synchronized code) is the 

same as calling pthread_cond_wait()
 Calling notify() is the same as calling pthread_cond_signal()
 Calling notifyAll() is the same as calling 
pthread_cond_broadcast()



public class Buffer {
public final static int SIZE = 10;
private volatile Object[] objects = new Object[SIZE];
private volatile int count = 0;

public synchronized void addItem(Object object) throws InterruptedException { 
while(count == SIZE) 

wait();
objects[count] = object;
count++;
notifyAll();         

}

public synchronized Object removeItem() throws InterruptedException { 
while(count == 0)    

wait();
count--;
Object object = objects[count];
notifyAll();         
return object;

}
}



 Syntax is a little cleaner looking in Java
 The synchronized methods work like they have a lock at the 

beginning and end
 Calling wait() waits until a notify() or notifyAll() happens
 This example shows a Buffer where items can be added or removed 

only by acquiring the lock (implicit in calling a synchronized method)
 Because the array has fixed length, only so many things can be added 

before it gets full
 That's why the addItem() will repeatedly call wait() until there's 

room and the removeItem() will repeatedly call wait() if there's 
nothing there





 In order to avoid race conditions, we introduced several 
synchronization tools:
 Locks (mutexes)
 Semaphores
 Barriers
 Condition variables

 Each of these can be misused, failing to avoid race conditions
 Likewise, each introduces overhead, slowing the system down
 But an even worse possibility is deadlock



 Deadlock occurs when the use of synchronization primitives 
cause threads to get stuck so that they will never make 
progress again
 A lock that never gets unlocked
 A semaphore that never gets posted on
 A barrier that is never reached by enough threads
 A condition variable that is never signaled on

 Like many concurrency problems, deadlock can occur rarely or 
it can happen every time a program runs



 In the following code, deadlock is possible

struct args {
pthread_mutex_t lock_a;
pthread_mutex_t lock_b;

};

void * first (void * args)
{
struct args *data = (struct args *) args;
pthread_mutex_lock (&data->lock_a); // Lock A
pthread_mutex_lock (&data->lock_b); // Then lock B
// Mode code (that would eventually unlock A and B)

}

void * second (void * args)
{
struct args *data = (struct args *) args;
pthread_mutex_lock (&data->lock_b); // Lock B
pthread_mutex_lock (&data->lock_a); // Then lock A
// Mode code (that would eventually unlock A and B)

}



 The following state diagram shows the states the threads can be in:
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 The two threads try to acquire locks in different orders:
 First tries to get lock A followed by lock B
 Second tries to get lock B followed by lock A

 If they tried to get the locks in the same order, we would never 
have this problem

 Even so, real situations are more complex
 Threads might need to acquire a number of locks for a 

number of resources
 The order might be hard to predict ahead of time



 Four conditions are needed for deadlock to 
be possible:
1. Mutual exclusion: Once a resource has been 

acquired, no other thread gets it
2. No preemption: Threads can't be made to give 

up their resources
3. Hold and wait: Threads can get one resource 

and keep it while trying to get others
4. Circular wait: Thread A needs a resource held 

by Thread B, and Thread B needs a resource 
held by Thread A (or extend to a chain of 
threads)

 Conditions 1 through 3 are unavoidable, so 
solutions often focus on avoiding circular 
wait



 Livelock is similar to deadlock
 It's a condition where, due to bad timing, processes continue 

executing code, but they never make progress beyond a 
certain point
 They're acquiring resources, giving them up, and acquiring them 

again, but still blocking each other
 If the system is set up in a certain way or is very unlucky, 

livelock could continue indefinitely
 Livelock can also sometimes resolve



struct args {
pthread_mutex_t lock_a;
pthread_mutex_t lock_b;

};

void * first (void * args)
{

struct args *data = (struct args *) args;
while (1)
{
pthread_mutex_lock (&data->lock_a);        // Lock A
if (pthread_mutex_trylock (&data->lock_b)) // Try to lock B
break;

pthread_mutex_unlock (&data->lock_a);      // Unlock A
}
// Mode code (that would eventually unlock A and B)

}

void * second (void * args)
{

struct args *data = (struct args *) args;
while (1)
{
pthread_mutex_lock (&data->lock_b);        // Lock B
if (pthread_mutex_trylock (&data->lock_a)) // Then lock A
break;

pthread_mutex_unlock (&data->lock_b);      // Unlock B
}
// Mode code (that would eventually unlock A and B)

}



 In theory, each thread could acquire the first lock at a very 
similar time, making the other one fail to get the second one

 In practice, it's unlikely that this system will stay in livelock for 
very long

 However, real systems are more complicated and could have 
long chains of resources that get partially lock and unlocked 
but never finish



 As mentioned before, we usually concentrate on the circular 
wait condition of deadlock:
 Order the resources and always acquire them in the same order
 Use timed or non-blocking versions of functions that acquire 

resources, potentially causing livelock
 Limit the number of threads that can access the resources, insuring 

that there's always enough resources to go around
 Use strategies that we'll talk about next time

 It's a hard problem: The Java Thread class has methods that 
were deprecated because they can cause deadlocks





 Synchronization design patterns
 Producer/consumer



 Work on Project 3
 Read sections 8.1, 8.2, and 8.3
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